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The column dead time, t,,,, plays an important role in solving theoretical and 
practical problems in gas chromatography and has special significance in the calcu- 
lation of isothermal retention indices’. Direct measurements of dead time are of 
limited value, as there are few substances that are not retained by the stationary 
phase but give a signal on flame-ionization detectors. The use of methane is ques- 
tioned especially widelyZ4. 

Simple procedures for the mathematical prediction of dead time, such as those 
of Peterson and Hirsch5, Hansen and Andresen6 or Haferkamp’ (eqn. 1): 

t= t . * t#g-i t, = n - A+1 

2 tn - tn+i - t,-i 
;i= 1,2,3,etc. 

making use of measured retention times of three evenly spaced n-alkanes, are blamed’ 
for the centre point being weighted excessively. Thus, according to Wainwright and 
Haken’s review*, small errors in the measurement of the retention time of the second 
alkane lead to gross errors in t,. Further, different triplets of data points in this 
method give different dead times. Calculation of an arithmetic mean from dead times 
gained from different triplets can lead to a unique solution2; this, however, is tiresome 
and the result depends considerably on the choice of triplets for calculation of the 
average. 

Kaiser9 proposed a computer program for calculation of dead time using the 
fitness of the equation 

t2 - tan 
log ___ ( > t1 - trill 12 - 11 --= 0 

f3 - &II 
log ~ ( > 13 - 11 

I1 - Gn 

where t and Z are the gross retention time and Kovits retention index, respectively. 
Grobler and Bali& ’ gave a computer program for the determination of the 

slope of the n-alkane line and of the dead time by use of two separate linear regression 
least-squares procedure involving logarithms. 

0021-9673/84/$03.00 0 1984 Elsevier Science Publishers B.V. 
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Guardino et al.” developed an iterative method of calculation in which the 
squares of deviations of the theoretical retention indices of n-alkanes are minimized 
with respect to the retention calculated from the equation 

log t’ = bZ + a (3) 

where t’ is the adjusted retention time and a and b are constants. The t,,, referred to 
as the ‘mathematical dead time’ is obtained so that the adjustment of the experimental 
points to the straight line is optimized. 

The last three methods, classified8 as iterative and statistical, are considered 
to be the most accurate, but they are pretentious in mathematical background and 
may be time consuming. 

Below we propose a simple method for the calculation of dead time. It weights 
all of the available experimental data equally and leads to a unique solution for all 
n-alkane peaks in a chromatogram, provided the chromatographic conditions remain 
unchanged. 

EXPERIMENTAL AND RESULTS 

It is accepted in both classical methods’-’ and the iterative and statistical 
methods9-’ l that the slope of the logarithmic plot of the adjusted retention times of 
n-alkanes versus carbon number is constant over a wide range of carbon numbers, 
excluding the first few n-alkanes. In other words, relative retention for successive n- 
alkanes is constant over the linear part of the plot, as expressed by the equation 

where z is the carbon number and q is the ratio of the adjusted retention times of 
successive members of the homologous series, or the relative retention. Substituting 
t z+l - t, for tl+l and t, - f,,, fort: , respectively, in eqn. 4, we obtain 

t r+1 - &n = 
tz - 4n 

4 

Incidentally, it was found that eqn. 5 can be transformed so that t, + 1 is expressed 
as a linear function of t, (eqn. 6): 

t z+1 = qtz -fm(4-1) 

Data points of the t, + 1 versus t, plot should, therefore, fit a straight line. The slope 
of this straight line, q, is the relative retention, or the quotient of the geometric 
progression formed by adjusted retention times of successive n-alkanes. Once q is 
known, the intercept of eqn. 6 multiplied by - 1 and divided by q- 1 will result in 
the dead time, t,. 

As can be seen, the procedure for the calculation of r,,, according to eqn. 6 is 
very simple and does not even involve logarithms. The method weights all of mea- 
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sured gross retention times involved in the least-squares procedure equally and pro- 
vides a unique solution common for all peaks in a chromatogram of n-alkanes. 

It is of interest that b, the slope of the n-alkane line (eqn. 7): 

log t’ =bzfc (7) 

emerges as an intermediate result in the calculation of dead time, because 

log q = b (8) 

as can be seen by inspection of eqns. 4 (or 5) and 7. Hence a run of a single linear 
curve-fitting program in a programmable minicalculator results in t, and b simul- 
taneously. This feature of the proposed method may offer an advantage in the cal- 
culation of Kovats retention indices”, which represents one of the most frequent 
uses of the dead time regardless of the way it has been obtained. 

The examples below are intended to show that our method produces dead 
times with high precision, as follows from the closeness of our dead times to those 
calculated by more sophisticated methods. 

Example I 
Wainwright and co-workersi3J4 reported a large set of experimental retention 

times for Cr-C, n-alkanes obtained by conventional gas-liquid chromatography on 
SE-30 and OV-25 and by gas-solid chromatography on columns of Porapaks, Po- 
rasils and squalane on Porasil C. The investigation was aimed at the examination of 
the linearity of the n-alkane plot with respect to the first members of the homologous 
series and at determination of effective carbon numbers. Adjusted retention times 
were obtained by subtracting the dead time, t,, calculated by the Griibler and Bal- 
izs” method, from measured gross retention times. 

Table I gives the reported gross retention times and compares the dead time 
calculated by Wainwright and co-workers13+14 using the Griibler and B&s” 
method with those we calculated in this work using e.qn. 6. The gas chromatographic 
conditions are given in the original papers’3*‘4. 

It is apparent from Table I that our dead times are very close to those ob- 
tained13,14 by the other method”, and the differences between them do not seem to 
depend on either the nature and polarity of the stationary phase or the size of the 
dead times themselves. 

Example II 
In this example we compare dead times obtained from eqn. 6 with those re- 

ported by Guardino et al. . I1 They evaluated the influence of the method of calcu- 
lation of the dead time on the accuracy of the retention index by using different 
values of the dead time and then comparing the values of the resulting retention 
indices with theoretical values. They calculated the retention indices from 

Z = 

log (t - hl) - a . 100 

b 
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where a and b are the intercept and the slope, respectively, of the straight line ob- 
tained when the least-squares procedure was applied to log (t - f,,J values versus 
carbon number, r being the measured gross retention time and r,,, the dead time as 
calculated by different methods. Table II gives three different sets of retention indices 
as obtained by Guardino et al.” using three different methods of calculation of the 
dead time. The methods are (i) the use of eqn. 1 involving the last three hydrocarbons 
(I,); (ii) the use of eqn. 1 taking the largest possible even spacing (C2c, Czs, C& (12); 
and (iii) the iterative method of Guardino et dl’ involving the ‘mathematical dead 
time’ using all hydrocarbons (Z,). 

The column in Table II headed Z4 contains retention indices we obtained by 
using eqn. 9 with insertion of our value of the dead time calculated from eqn. 6 
involving the nine gross retention times in the second column. 

The dead time calculated by eqn. 6 using all of the retention data in Table II, 
227.31 set, is in good agreement with that of Guardino et al. (229.16 set). The good 
agreement becomes excellent when the calculation according to eqn. 6 is carried out 
neglecting the gross retention time of the highest n-alkane (1990.0 set), the resulting 
dead time being 229.44 sec. As a consequence, retention indices (column headed I5 
in Table II) recalculated with this dead time according to eqn. 9 fall as close to the 
theoretical values as Guardino er al. ‘s values (column Z3). 

As follows from the nature of the dead time calculations involving math- 
ematical processing of experimental (gross) retention times, the accuracy of any dead 
time calculated by these procedures depends on the reliability of the raw experimental 
data. The values in the columns headed Z4 and Z5 in Table II exemplify this depen- 
dence in the particular case discussed. 

The proposed method for the calculation of the dead time (and the slope of 
the n-alkane line) is simple and rapid. The relationship shown by eqn. 6 is linear, and 

TABLE II 

INFLUENCE OF THE METHOD OF CALCULATION OF THE DEAD TIME ON THE ACCU- 
RACY OF THE RETENTION INDEX 

Theoretical 
retention , 
index* 

Rgention 
time*** (set) 

Calculated retention index 

4 
l 

Ia 
l 

13 
l 

14 15 

700 254.0 721.37 693.18 -- %0.67 704.81 700.05 
800 271.0 799.93 798.49 798.45 798.57 798.45 
900 301.0 891.02 903.15 899.82 899.02 900.11 

1000 352.5 989.03 1005.28 1001.17 998.84 1001.53 
1100 440.0 1090.75 1105.19 1101.70 1099.67 1102.00 
1200 580.0 1190.00 1199.35 1197.17 1195.89 1197.37 
1300 839.0 1299.54 1301.0 1300.83 1300.64 1300.86 
1400 1267.0 1405.95 1398.68 1400.51 1401.56 1400.36 
1500 1990.0 1512.35 1495.54 1499.63 1501.99 1499.28 
r, (set) 218.03 232.17 229.16 227.31 229.44 
r2*** 0.998284 0.999772 0.999973 0.999910 0.999972 

l Data taken from ref. 11. 
** Stainless-steel capillary column (30 m x 0.3 m I.D.); stationary phase, Apiezon L; temperature, 

120°C. 
** r = Regression coefficient. 
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does not require the use of logarithms. It can include any number of measured data, 
which will be weighted equally and result in a unique value valid for all peaks in- 
volved, provided the chromatographic conditions remain unchanged. 

The uncertainties that may be a consequence of shifts in marking the instant 
of the sample injection (as pointed out by &vEiki5 can be overcome by using an 
arbitrary reference origin, as is done in the Peterson and Hirsch method. 

REFERENCES 

1 M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. M&&ros, Sz. Nyiredy, 0. Tarjan, I. Tim&r 
and J. M. Takacs, J. Chromatogr., 271 (1983) 213. 

2 R. Kaiser, Chromatogruphio, 2 (1969) 215. 
3 L. S. Ettre, Chromorographia, 6 (1973) 489. 
4 M. S. Wainwright, J. K. Haken and D. Srisukh, J. Chromatogr., 179 (1979) 160. 
5 M. L. Peterson and J. Hirsch, J. Lipid Res., 1 (1959) 132. 
6 H. L. Hansen and K. Andreseq J. Chromtogr., 34 (1968) 246. 
7 M. Haferkamp, in R. Kaiser (Editor), Chromotogrophie in der Gasphase. Teil II, Bibliographisches 

Institut, Mannheim, 1966, p. 93. 
8 M. S. Wainwright and J. K. Haken, J. Chromatogr., 184 (1980) 1. 
9 R. Kaiser, Chromatogrophia, 7 (1974) 251. 

10 A. Griibler and G. Balizs, J. Chromatogr. Sci., 12 (1974) 57. 
11 X. Guardino, J. Albaiges, G. Firpo, R. Rodriguez- Viiials and M. Gassiot, J. Chromatogr., 118 (1976) 

13. 
12 E. Kovats, Helv. Chim. Acta. 41 (1958) 1915. 
13 M. S. Wainwright and J. K. Haken, J. Chromatogr., 256 (1983) 193. 
14 M. S. Wainwright, J. K. Haken and D. Srisukh, J. Chromotogr., 188 (1980) 246. 
15 J. &wEik, J. Chromatogr., 135 (1977) 183. 


